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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
parmership with JSCto joimly define and manage an int'egrated program of research
in advanced data processmg technology needed for JSC’s main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two. msmtgg@ to conduct the research. -

“The mission of RICIS is to conduct, coordinate and dissemmate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake NASA/JSC and other research organizalions Within UH-Clear
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

‘into the cooperatwe goals of UH-Clear Lake and NASA/JSC.
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ABSTRACT

The development of computer science has produced a vast number of machine architectures,
programming languages, and compiler technologies. The cross product of these three
characteristics defines the spectrum of prei/ious and present data representation methodologies.
With regard to computer networks, the uniqueness of these methodologies presents an obstacle
when disparate host environments are to be interconnected. Interoperability within a

heterogeneous network relies upon the establishment of data representation commonality. \
’»

The Intemational Standards Organization (ISO) is currently developing the Abstract Syntax
Notation One standard (ASN.1) and the Basic Encoding Rules standard (BER) that collectively
address this problem. When used within the Presentation Layer of the Open Systems
Interconnection Reference Model, these two standards provide the data representation
commonality réqui:ed to facilitate interoperability. This paper describes the details of a coﬁpiler
that was built to automate the use of ASN.1 and BER. From this experience, insights into both

standards are given and potential problems relating to this development effort are discussed.



1. Network Heterogeneity

The developmen; of computer science has produced a vast number of disparate machine
architectures, programming languages, and compiler wérholbgiw. The crossk product of these
three characteristics defines the spectrum of previous and present data representation
methodologies. Although at one time the uniqueness of each technique provided vendors with a
convenient and desirable means to monépolize their cuétomers, the éroliferéﬁon of computers
and the increasing maturity of distributed processing have now obscured any of the previous
advantages associated with this incompatibility. Nevertheless, established manufacturers are
uhwilling to abandon their investment m their own unique data representation schemes. Thus
when computer networks interconnect these heterogeneous systems, a solution to the problem of

~ data transfer across incompatible host environments must be provided.

1.1 Architectural Considerations

As a simple illustration of how hardware architecture influences this problem, consider three
different techniques used to represent integer values: sign magnitude, diminished radix
complément (bne'é complement), and radix complement (two’s complement). Although most
contemporary architectures now use two's complement, there are architectures currently in use
that do not.! Consequently, if integer data were to be exchanged between a one’s complement
machine and a two’s complement machine. each computer would have a different interpretation
of the "same” negative values. Other data types also suffer from this representation disparity;

perhaps the most obvious is floating pomt numbers.

1. The CDC 6600 is a one’s complement architecture.
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To complicate these architectural considerations even further, characteristics such as word
alignment, byte ordering, and addressability may also present problems. Moreover, the inﬂﬁence
of hardware architecture extends beyond just that of the CPU. The difference between the ASCII
and EBCDIC character sets indicates that the architecture of peripherals also bears significance.
The interaction and interdependencies that exist between all of these characteristics suggest that

the influence of hardware architecture on the problem of disparate data representations is broad.

1.2 Languages and Compilers

The differences in conditional expression evaluation that occur within the C and Ada
programming languages demonstrate the manner in which programming languages can contribute

to this problem. In all C implementations a conditional expression is true if it evaluates to any

“* nofi-zero value; it is false if it evaluaté to zero precisely. Although the C programming language

does not explicitly provide a boolean type, most C programmers use an integer data type to

represent these kinds of values. In Ada, however, a boolean type is predefined as an enumerated

" type in package STANDARD. By virtie of its enumerated form, the only requirement relating to

the representation of its values is that the reptesentatidn of false be numerically less than the
representation of true. Thus, each mdmdual Ada compiler determines the exact nature of how-
boolean values are represented. Since Ada treats conditional expressions as boolean values, the
evaluation of such expressions may clearly vary. In this respect, if the same application program
were to be implemented in two different programming languages, it is feasible for two values that
are intended to represent the "same" condition to be different. In fact, in certain cases it is more
precise to attribute this phenomenon to the differences between compiler implementations than to

the difference between programming language definitions.2 Consequently, applications written in



the "same" programming language may experience miscommunication.

1.3 Solving the Problem

With regard to network heterogeneity, the disparate data representation problem is clear.
Since different host environments may possess different methods of representing data, the
interoperability of these machines can not be achieved solely by the establishment of a reliable
connection. At some point during the communication, a transformation to and from each host
machine’s native representation must be performed. This function could be carried out in one of
two ways: either (1) each host environment must be cognizant of the representation
characteristics of each other host environment with which it wishes to communicate, and
therefore each host must perform a potentially different transformation for every host-to-host
combination, or (2) a common method of data representation must be established whereupon each
host would be responsible for the single transformation between this standard method and its own

native representation. This latter approach, which is certainly the more desirable alternative,

captures the intent of the Abstract Syntax Notation One and the associated Basic Encoding Rules. .

2. ASN.1

The ASN.1 standard!! (ISO 8824) defines a language used to describe data values and data
types. Itis typically used by Application Layer protocols to define the types of their Application
Protocol Data Units (APDUs). For example, protocols such as File Transfer, Access, and

Management (FTAM) and Virmal Terminal (VT) use ASN.1. However, it is important to note

2.' MicroSoft C compilers treat character values &3 signed quantities by defmult. Consequently, all charscter values are
sign extended during type conversions. Lattice C compilers, however, consider all character values to be unsigned
by default and do not sign extend.
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that the use of ASN.1 is not necessarily restricted to the Application Layer. Theoretically, it

could be used to define the Protocol Data Units (PDUs) of any layer.

In the OSI nomenclature, ASN.1 provides the means to define an abstract syntax. To
understand this concept, it is useful to consider the term literally. In the formal, academic sense,
a symax defines the legal sentential forms of a language. Within the context of

communications, one usually thinks of a syntax as defining the bit pattems used to represent data

flowing across a medium. An abstract syntax does not define these bit pattems, but rather it

establishes a framework whereupon these bit pattemns, called a transfer syntax, can be created.

The manner in which they are created depends upon the encoding rules that are applied.

2.1 Simple Types and Structured Types

There are two classes of ASN.1 data types that enable a user to describe the individual data
units of a protocol, simple and structured. Simple types correspond to the primitive, atomic
types typically found within most programming languages. The ASN.1 simple types include:
booleans, integers, bit strings, characterrstrings, and various other forms.> Structured types are
identified by various ways m whlchc:usung A§N1 types may be logically gmqpefi or 7logrically

partitioned. ASN.1 defines five methods of formulating these structured types:

1. given an ordered list of existing types, a value can be formed as an ordered sequence of
values, one from each of the existing types; the collection of all possible values obtained in

this way is a new type;

3. Real typu cmxmaied types and subcypes are defined within a draft addendum and are therefore not currenty part
of the official ASN.1 standard. However, tlfxfexrimclusxon with ISO 8824 is eminent.



2. given a list of distinct existing types, a value can be formed as an unordered set of values,
one from each of the existing types; the collection of all possible values obtained in this

way iS a new type;

3. given a single existing type, a value can be formed as a ordered sequence of or unordered
set of zero, one or more values of the existing type; the infinite colection of all possible

values obtained in this way is a new type;

4. given a list of distinct types, a valqe can be chosen from any one of them; the set of all

possible values obtained in this way is a new type;

5. given a type, a new type can be formed as a subset of it by using some structure or order
relationship among the values;
These five methods correspond to the ASN.1 structured types: sequence, set, sequence-of or

set-of, choice and subtypes, respectively.

2.2 Tags

Every data type that Is defined using ASN.1 has an assigned tag. The value of this tag is
either predefined by ASN.1 implicitly or defined by the user ofﬂttrnc Vrrxotan'ron explicitly. The
encoding rules always carry the tag of an ASN.1 type, whether explicit or implicit, with any
representation of avalue of the type. The purpose of this tag is to enable the distinct type of the
represented value to be deduced during the dedoding process. There are four classes of tags:
universal, application, context-specific, and private. Universal tags are assigned exclusively
by ISO 8824; application tags are assigned to types by other standards; private tags are never
assigned by ISO Standards or CCITT Recommendations and are therefore enterprise specific, and
context-specific tags may be assigned within any use of ASN.1 for the purpose disambiguating

the type according to the context in which it is used.
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2.3 An ASN.1 Example

To familiarize ourselves with ASN.1, let us consider a very simple, hypothetical set of data
communication requirements relating to the NASA Space Station. From these requirements, we

will define our own protocol using ASN.1.

One of the data communication requirements of the Space Station might involve the transfer
of work requests and the transfen; of 7¢§t;ésbohding results.r ﬁw”scbedul‘ing of a particular
scientific experiment and the reporting of the results obtained from its execution are a perfect
example of this kind of information exchange. The developement of a protocol that meets the

needs of this communication problem requires thai two PDUs be defined, Request and Result.

We will call this new application protocol'the Work Management Protocol (WMP). In our

ASN.1 definition of WMP we will recognize the following requirements:
1. A work request value should provide a textual description of the work to be performed.

2. A work request value should provide an indication of when the work is to be aﬁempted.
However, the specification of this element should be optional If the requesting entity
chooses to omit the specification of this value, then the work is to be performed at the

receivers convenience.

3. A work request value should provide an indication of who is to anuilpt the work; this will
entail the specification of zero or more individuals.* Furthermore, it is important that the
user be given the ability to associate an authority hierarchy with the individuals that are

specified. In other words, the manner in which these individuals are expressed should

4. In the case where no individuals uespeciﬁed.dwreqtﬁtedworkmybecuﬁedombywbmeﬁerisavaﬂableu
the time it is scheduled to commence.



reflect a "chain of command".

A result value should indicate more than just success or failure. It should also indicate the
names of the individual(s) who attempted to perform the task. This may differ from the
original request. The contents of a result value should also vary according to the outcome.
If a work request is executed successfully, the time of completion should be given. If a

request was not performed, an explanation of why it failed would be desirable.
Each work request value should possess an indication of its relative importance (priority).

A mechanism to associate each result value with its original request should be provided,

otherwise the request and result transfers would have to occur in lockstep.
Considering these requirements, the ASN.1 definition of WMP might look as follows:

Wmp DEFINITIONS ::= BEGIN

Request ::= SET { -
assigned-to Participants OPTIONAL,
start-time UTCTime OPTIONAL,
id-number (0] INTEGER,
importance INTEGER (background(0), normal(1), urgent(2)},
description [A5String '

Result ::= SEQUENCE {
Participants,
id-number INTEGER,
CHOICE ( '
time-of-completion UTCTime,
reason-for-failure IASString

}
}

Participants ::= SEQUENCE OF [A5String
-- listed in order of decreasing authority

END

Figure 1. An ASN.1 Module
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‘between any two.

The block of text in Figure 1 represents a module definition. The module construct

represents the ASN.1 way in which related type and value definitions may be logically grouped.

Every module definition begins with a statement of the form:

<module name> DEFINITIONS ::= BEGIN

and ends with the keyword END. For a module corresponding to an international standard, it is

recommended that its corresponding module name be of the form:
[SOxxxx-yyyy
where xxxx is the number of the international standard and yyyy is a suitable acronym.

Syntactically, the use of ASN.1 is somewhat flexible; the layout of the notation is not
considered significant. Likewise, indenting is permitted and in fact encouraged. Its proper use
will dramatically increase the r"e'adabi'lit’)fcii?fthéjﬁéit’aﬁom ASN.1 is, however, case sensitive. All
keywords such as i)EF[NI’I’IONS, BEGIN, END, SEQUENCE, and INTEGER must appear in
upper case. Certain classes of identifiers must”also begin with either upper or lower case letters

specifically. For example, a module name must always begin with an upper case letter; all of its

subsequent letters may be expressed in either upper or lower case, and hyphens may appear

This particular module definition” consists of three type assignments; each defines a new

_ ASN.1 data type and establishes a type reference (or name) that can be used to designate the

- type. All type references must bégin with an upper case letter. The first type assignment defines

the type reference Request as a SET of three elements. The second and third assignments define

the Result type reference and Participants type reference as a SEQUENCE and a SEQUENCE
OF, respectively.

The ASN.1 sequence is a constructor notation used to model an ordered collection of
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variables whose number is known and modest and whose types may differ. To think of this in
programming language terms, a sequence data type may be viewed as the ASN.1 equivalent of a
Pascal record or a structure declaration in C. An ASN.1 set is identical to a sequence except for
the property that the Ol'detj of Lhe el;mgms within a set is not considered significant.’ The ASN.1
sequence-of type is identical to the sequence type except for the fact that all of the elements of a

sequence-of must be of the same type and the number of these elements is unbounded.

3. BER

The Basic Encoding Rules standard!? (ISO 8825) defines a specific technique for encoding
data. To use our previous OSI terminology, it defines a2 mapping from the abstract syntax,
defined by ASN.1, into the transfer syntax. A BER encoding is represented as a sequence of

octets. These octets are partitioned into 3-tuples, indicated in Figure 2:

IDENTIFIER LENGTH CONTENTS

Figuré 2. Encoding Format

The idenﬁﬁer octet(s) contain information regarding the type and form of the encoded data
value. A primitive form indicates that the contents octets contain a direct representation of
the data value. A constructed form indicates that the contents octets contain another embedded
encoding. ,,'“,“‘f lengthgctet(s) detern;imr the end of an encoding. They indicate how many

contents octets rcpresem;he encoded data, or, if that this number is unknown, then they indicate

"5 Wehnveusedthemtypem&uumlemdanmmmmmdunASNl mdtoauedmenuontot}n
importance of explicit tagging. Nommndmwmehlddmmeﬁamassommdmthmedecodmgofscuyps
in general, which is discussed later, we do not recommend that they be used.
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that the contents octets are delimited by a reserved bit pattern called an end of contents (EOC)
sequence. The contents octets contain a direct representation of the data value or another nested

identifier-length-contents sequence.

3.0.1 The Identifier Octet(s)

The identifier octets denote the tag and form of an encoded data value. An identifier octet
sequence can assume two formats. Which format to use in a given case depends upon the
magnitude of the tag number. If the tag number falls within the range 0..30 inclusively, then the
cdrres’ponding binary value may be placed within a five bit field, thus enabling the entire
identifier information to fit into one octet. If, on the other hand, the tag number exceeds 30,

additional octets must be used. Fxgure‘ 24 iﬁdiéafes the layout of the single octet format.

g8 7 6 S5 4 3 2 1

CLASS | pP/iC TAG NUMBER
00 = SAL ox«rm: xs WITHIN
01 = APPLICATION 1 = CONSTRUCTED THE RANGE 0..30
10 = CONTEXT-SPECIFIC

11 =PRIVATE

,,,,,

Figure 3 Idcnnﬁcr Octet (low tag number)

As ﬂlustrated three information ﬁclds are contained within the identifier octet. The meamng

of each is as follows:
1. Class: Bits 8-7 indicate the tag class of the encoded data value.

2. Form: Bit 6 indicates whether the encoded value is primitive or constructed. A primitive

form indicates that the contents octets contain a direct representation of the data value. A
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constructed form indicates that contents octets are the complete encoding of another data
value. In other words, the subsequent contents octets contain embedded identifier-length-

contents sequences.

3. Tag Number: For tag numbers falling within the range 0 to 30 inclusive, bits 5-1 of the
leading (and only) octet designate this value. For tag numbers greater than 30, bits 5
through 1 contain the value 11111. This reserved bit pattemn indicates that an extension of
additional octets is required to hold the tag number. Bits 7-1 of each subsequent octet
whose 8 bit is set to 1, up to and including the first octet whose 8 bit is set to zero, will be

concatenated to form the binary tag number value. Figure 25 graphically illustrates this.

LEADING OCTET - SUBSEQUENT OCTETS >

8§ 7 1 8 7 1 8 7 1
[as[peliim] [l 1 m/ ] }
TAGNUMBER = | l [ ] B

Figure 4. Identifier Octet (extended tag number)

3.0.2 The Length Octet(s) -

The purpose of the length octets is to determine the end of an encoding. They explicitly
indicate how many contents octets have been used in the encoding, or, alternatively, they signify
that this length is unknown but deducible. In the explicit case, they contain the binary value
corresponding to the exact number of contents octets that follow. In the case where this number
is unknown, they contain a reserved bit pattem indicating that the contents octets are delimited

with a special EOC sequence. An EOC sequence consists of two octets whose binary values are

Zero.
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Like the identifier octet(s), the length octet(s) may be expre;ssed in more than one format: the
short form, the long form, and the indefinite form. The use of a specific format is determined by
three conditions: the form of the encoding (primitive or constructed), whether the number of
contents octets is known in advance and the magnitude of this number. Primitive encodings are
restricted from using the indefinite form since this would preclude the appearance of two
consecutive "zero octets” within their contents octets. However in the case of a constructed type,
the EOC octets always fall at the point in the encoding where the next identifier octet would be.
Since zero is not a valid identifier octet (the UNIVERSAL 0 tag does not exivst) there is no
ambiguity. The choice of which format to use with constructed encodings is left to the user’s

discretion. Figure 26 illustrates the layout of these three forms.
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SHORT FORM
8§ 7 1

0| Number of contents octets

LONG FORM

«<——— Leading Octet ————» <«———— Subsequent Octets —————»

8 7 1 8 1 8 1
1 Number of length octets B

Number of contentsoctets= | | | ...

INDEFINITE FORM

8 7 1
1{0 0 0 0 0 0 O

Figure §. Length Octet Forms: short, long and indefinite

In the short form, the number of octets that the length information occupiés is one. Bit 8 is
required to bezer[),and bits 7-1 contain the number of contents octets. Obviously, this form may
be used only when the number of contents octets is less than or equal to 127. In the loﬁé Vfoxm.
the number of octets that the length information occupies can be anywhere from 2 to 127. In the
leading octet, bit 8 is always setto 1, and bits 7-1 indicate the number of subsequent length octets
required. Since the bit pattern 11111111 has been reserved for possible future extension, the
maximum number of subsequent octets is 126. As illustratedr in Figure 26, these subséqﬁent
octets are concatenated to form the binary value indicating the number of contents octets used in

the encoding. Finally, the indefinite form requires only one octet containing the reserved bit

.
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pattem indicated above. In relation to the other formats, this bit pattern represents the long form
with zero subsequent length octets. From a logical perspective, this makes sense. No need for

subsequent length octets exists since the contents octets are delimited by an EOC sequence.

3.0.3 The Contents Octet(s)

In a primitive encoding, the data value is directly represented by the contents octets. This
may not, and in many mstanceswﬂl nqt,: be exaaly the same as the oﬁginzgl nativc mpmsenmﬁon,
depending on the host environment, the data type, and the magnitude of the value Vitsélf. For
example, ISO 8825 specifies that negative integers are always in two's complement form and that
the character values of an IAS5String are in ASCILS In a constructed encoding, the contents octets
do not contain a direct representatibn of the data value, but instead contain further encodings.

These nested encodings can in tum be constructed if necessary.

3.1 A BER Example

4. Building an ASN.1 Compiler

The purpose of an ASN.1 COmpiie; is t0 automate the generation of logic required to encode
andiccocrlc PDUs according to the transfer syntax, in this case the transfer syntax is BER. The
relative benefit of an ASN.1 compil;r is directly proportional to the stability of the protocol at
hand. For mature protocols such as VT and FTAM, the likelihood of significant modifications is
very small. Therefore, the need for an ASN.1 compiler is not a compelling issue. However, in an

environment where a protocol is evolving and changing, an ASN.1 compiler offers tremendous

6. Mmy other characteristics of ISO 8825 also influence this change in representation. For example, integers are
always encoded in the minimal number of octets, etc.
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benefit.

Figure 2 depicts how an ASN.1 compiler might be used within an implementation. The
source code pi'oéessed by the compiler is the actual ASN.1 description of the data types of an
Application Layer protocol. The object code consists of a set of encode and decode routines
(Wmp.c"), a run-time library (runtime), and an "include" file containing the corresponding APDU
px'c;gfammihg language declarations (me.h). The encode, decode and run-time routines are

~ subsequently embedded within the Presentation Layer implementation. The APDU declarations

file is referenced within both the Application and the Presentation Layers.

t
DEVELOPMENT TIME ! OSI STACK
i
1
i
Wmph |..... |
._l'-
",
' Application
ASN.1 COMPILER ~ Wmpc .
]
P Y '.:-. 0
:
]
]
runtime |....... I
' Presentation
] ) - -
:
1
]
1)
]

Figure 6. Using an ASN.1 Compiler

7. Thenlmesoftheﬁlugenuuedby!hecompﬂuwil]mulw:ysbeme.cdempJu The names of these files
always coincide with the name of the ASN.1 module. S
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4.1 Physical Specifications

The compiler is written in the C programming language and is approximately 5000 lines in
length. Its front end was developed using the Unix utilities Lex and Yacc. The compiler accepts
an ASN.1 module definition as input and generates two C files as output: an include file
containing the C declarations of the APDU’s, and a code file containing the two C functions
encode and decode. A run-time library also provides a melange of general purpose routines.
Unfortunately, the compiler does not support the entire ASN.I standard; the macro notation,
character sets other than IASStrings, useful types, and external references are not presently

implemented.

4.2 Generating Declarations

To create a transfer syntax, the ASN.1 compiler depends upon 2 ﬁrecise knowledge of the
APDU representations. It is therefore appropriate that the compiler ass"u_n';;‘s t_he respons:blhty of
creating these declarations on behalf of thc Application Layer. This érovides a‘ more robust
implementation since it ensures that the ASN.1 data type definitions will be always consistent
with the actual APDU representations. Clearly this is desirable considering that the relative
benefit provided by an ASN.1 compiler hinges upon its ability to minimize the effects that
modifications to the abstract syntax may cause. The reader’s understanding of this niépping from
the ASN.1 definitions to the APDU declarations is most important; it represents the first bridge

between an ASN.1 definition and a working implementation.

Assuming that the reader is familiar with the C programming language, the clearest means of
describing this aspect of the compiler is through an example. Let us examine the APDU
declarations generated from the module definition of WMP that appears in Figure 1. These are

shown in Figure 4.



typedef struct {
int no_of_elems;
char **¢lems;

} Participants_apdu;

typedef char *UTCTime_apdu;

typedef struct {
Participants_apdu _unnamed_1;
int id_number;
- ostruct { 000
enum ({time_of_completion,
reason_for_failure} which_choice;
union {
UTCTime_apdu time_of_completion;
char *reason_for_failure;
} choice;
} _unnamed_2;
} Result_apdu;

typedef struct {
Participants_apdu *assignedto;
UTCTime_apdu start_time;
int id_number;
int importance;
char *description;

} Request_apdu;

typedef struct {
enum {UTCTime,
Participants, =0 T omeeT
Result,
Request} which_apdu;
union {
UTCTime_apdu UTCTime;
Participants_apdu Participants;
Result_apdu Result; T r mmITimeT
Request_apdu Request;
} apdu;
} Wmp_apdu;

typedef struct
intlength; =
byte *value;

} Wmp_encoding;

Figure 7. Declarations of WMP APDU’s
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Although the above declarations do not represent the entire contents of the declarations file, this

is sufficient to illustrate the important facts.

Each type assignment within an ASN.1 module definition produces a corresponding C
typedef declaration. The Request data type, for instance, is represented by the typedef structure
Request_apdu. As one would expect, it contains three members, each corresponding to one of the
three elements within the original ASN.1 data type definition. Typedef declarations for the data
types Date and Result also appear. All of these typedef declarations are subsequemly referenced
as members of a union that is embedded within r.he me apdu structure. Wmp_apdu is a variant
record that represents any APDU of our WIMP protocol Each of its variants corresponds to one
of the data types defined within the original ASN.1 module. The which_apdu member identifies

the type that is currently being represented by the union.

There are two subtle but important aspects of the above declarations that should be noted.

First, the order of these typedef declarations does not correspond to the original ASN.1 definition.

‘This is because forward references, while permitted within ASN.1, are not permitted within C.

Consequently, the declaration of VDate_apdu must precede the declaration of Request_apdu.
Second, notice that the name of the second member of the Request_apdu structure is
_unnamed_l. Since the second element of the original ASN.1 definition of the Request data type

was not named, the corresponding C name must be supplied by the compiler itself. This

 illustrates why the use of named types within an ASN.1 element list enables the compiler to

4.3 Generating Code

The compiler generates two routines which are to be subsequently integrated into the

Presentation Layer. Since actual C code of each is very detailed it will not be presented. The
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reader may refer to Appendix A where a complete listing of the code generated for this particular
example is given. Within this section the logical operation of each function is discussed in a very

general sense. The corresponding function declarations are given below.

encode_Wmp (decoding, encoding)
Wmp_apdu *decoding;
Wmp_encoding *encoding;

decode_Wmp (encoding, decoding)
byte *encoding;
Wmp_apdu *decoding;

Figure 8. The Encoding and Decoding Functions

431 Enéoding

The encoding function accepts the decoding argument as input and produces the encoding
argument as outpui. The encoding proces occurs in two phases. The'purpose of the first phases
is toré;rlc;l‘ate all of the leném oct;t 7;alucs of the encoding to bewgcneratgd and to a.llocaté an
encoding buffer of the proper size. This task is performed by examining the contents of each
value within the given APDU and making the appropriate run-time calls. These computed length
values are inserted into a table which already contains the type octet valués for each type that has
been defined in the ASN.1 module. These values are subsequently extracted from this table in the
later phase as the actual encoding is generated. The fact that the inner length octets of an ASN.1
encoding deterﬁﬁnethe 'values of the outer length octets explains why this length calculation
phase is necessary. In other wonis it is not possible to build an encoding from the inside out
since the starting offset within the enco;iing buffer is unknown. The second phase focuses upon
buﬁding the actual enéoding. The type and length values from the pmvxo&lyibhﬂtitable are
 inserted into the encoding buffer and the actual values of the APDU are passed to the appropriate

run-time routines which insert the contents octet values.
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4.3.2 Decoding

The decoding function accepts the encoding argument as an input and produces the decoding
argument as output. The decoding process is controlled by a finite state machine, implemented as
a state table. Each entry of the state table contains an expected type octet value and a set of

transitions. The finite state table for the Wmp module of Figure 10 is given below:

struct decode_state {
struct {
class ¢;
form f;
int id;
} type:
int match_state;
int diff_state;
int end_state;
boolean matched
} Wmp_fsm{] = {
{ {universal, primitive, 22}, -1, 1, 0, false},
{{universal, primitive, 2}, -1, 2, 0, false},
{ {universal, constructed, 16}, 3, -2, 0, false},
{{universal, primitive, 22}, 4, -2, 0, false},
{ {universal, primitive, 22}, 5, -2, 0, false},
{{universal, primitive, 22}, -1, -2, 0, false}

Figure 9. The Decoding Finite State Machine

The match_state element represents the transition that is to be made when the current type octet

- matches the type octet of the given state. As one might guess, the diff state element represents

the transition that is to be made when these two type octets differ. The end_state is necessary

~ when the value being decoded requires that a set of states be executed an undeterminable number

of times; this is the case when the value is a set type, a set-of type, a sequence-of type, or 2

recursive type.

The actual decoding process consists of a large switch statement that is iteratively executed

until either the decoding is successfully completed, or the decoding fails.
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4.4 The Run-Time Library

Most of the "bit-level” details of the encoding and decoding process are contained in the run-
time lLibrary. This library consists of a set of C routines that perform very specific functions. The
nature of these functions does not vary with respect to the ASN.1 definition; that is, the work
performed by these run-time routines is applicable to the encoding and decoding of almost all

ASN.1 definitions. An overview of these run-time routines is given below.
The ASN.1 compiler’s run-time library consists of the following routines:

1. Dec_typlen : This function decodes the type and length octets of an an encoding. It
supports both the five bit form as well as the extended form of the type octet(s) as well as

the short, long, and indefinite forms of length octet(s).

2.  Enc_typlen : This function decodes the type and length octets of an encoding. It supports
" both the five bit form as well as the extended form of the type octet(s) as well as the short,

long, and indefinite forms of length octet(s).

3. Len_len : This function determines the length of a length octet value. In other words, it
determines how many length octets are required o hold a given length value. This routine

is called by the encoding routine when it is computing the length of the encoding.

4. Int_len : This function determines the number of contents octets required to encode a

given integer value.

5.  Enc_ine ; This function inserts the encoding of an integer value into the contents octet(s) of
an encoding. In accordance with clause 8.2 of ISO 8825, the number of contents octets

produced is always the minimum required to represent the integer value.

6. Dec_int : This function returns the integer value represented by the contents octet(s) of an

encoding.
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Enc_bool : This function inserts the encoding of a boolean value into the contents octet(s)

of an encoding.

an encoding. A boolean value in C is declared as an unsigned char.

Enc_iaSstr : This function inserts the encoding of a [A5String value into the contents

Dec_iaSstr : This function retumns the IASString value represented by the contents octet(s)

of an encoding.

. Enc_bstr : This function inserts the encoding of a BIT STRING value into the contents

octet(s) of an encoding.

Dec_bstr : This function retumns the BIT STRING value represented by the contents
octet(s) of an encoding.

Enc_ostr : This function inserts the encoding of a OCTET STRING value into the contents
octet(s) of an encoding.
'Dec_ostr : This function retums the OCTET STRING value represenied by the contents
octet(s) of an encoding.

Obj_id_len : This function calculates the number of contents octets required to encode a

given OBJECT IDENTIFIER value,

Enc_ostr : This function inserts the encoding of a OBJECT IDENTIFIER value into the

contents octet(s) of an encoding.

Dec_ostr : This function returns the OBJECT IDENTIFIER value represented by the

contents octet(s) of an encoding.
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4.5 Performance

As a more substantial test, the F-INITIALIZE- request PDU of the FTAM Application
protocol®! was given to the ASN.1 compiler. Wilh the exception of converting two Graphic
String data types to IASStrings and modifying one tag,’ the FTAM definition used to conduct this
performance measurement should represent the overhead one would expect to encounter in
reality. Although the other PDUs of FTAM were reduced to integer data types, their explicit tags
were left intact. Since these types correspond to transitions within the decoding finite state
machine that are never be made, the reduction of these typ&s is imelevant to the measured
performance. | |

Given the definition described a_béw?e';'tﬁ'e ASN.1 compiler generated a declaration file of 194
lines and a C code file of 2849 lines. Running on a Sun 3/140 workstation, the time to encode the
F-INTTTALIZE-request PDU was approximately 5.11 milliseconds, and the time to decode was

approximately 4.97 milliseconds.’
S. Conclusions
Through the process of building the compiler many insights into the ASN.1 and BER were

obtained. This section presents these observations in an effort to illuminate the answer to the

question of how well ISO 8824 and ISO 8825 solve the problem of network heterogeneity. When

approaching this issue it is essential that one bear in mind the kinds of characteristics that

determine the context that makes such an evaluation possible: efficiency, clarity, applicability,

8. The explicit tag of the Protocol-Version data type was changed from [0] to [9]. This was necessary due 1o m
ambiguity within FTAM .

9. Timings were obtained using the Unix time wmmd whaeu'pon the reported user and system times were
combined. The Sun workstation was dedicated to 1 single user when these measurements were taken.

g €1 ¢

¢« i @i n g a1

€@

I

l

11

I W



t

{

{l
(]

I

i

i

Qi

I ot Rt

omu

"
!

N

il

(1

and ease of implementation.

5.1 Ambiguity

One of the more surprising discoveries that resulted from our experience with the ASN.1
standard is the fact that the concept of ambiguity is not well defined. In the introduction of ISO
8824 a footnote indirectly addresses this issue in the context of tagging. It states:

Encoding rules always carry the tag of theﬁpé éxpliéidy or hnpuciﬁi,;ﬁﬂi any

representation of a value of the type. The restrictions placed on the use of the

notation are designed to ensure that the tag is sufficient to unambiguously
determine the actual type, provided the applicable type definitions are available.

The reference to the tag (singular) in the above statement suggests that if ever a specific tag value
indicates more than one type in any given context, then the ASN.1 definition is ambiguous. If
this is indeed the correct interpretation, then the logic required to decode an encoding is LR(0)."
This coincides witﬁ the finite state machine approach that is used to perform the decoding within
our ASN.1 compiler. Yet, this same interpretation of ambiguity also suggests that the official

ASN.1 definition of FTAM is ambiguous!

Looking at the partial definition of FTAM that appears in Appendix B, notice that the data
type PDU is a choice consisting of three untagged alternatives. Since these elements do not
possess explicit tags, an encoding of this data type is identical to the encoding of the selected
altemnative. Furthermore, notice that the FTAM-Regime-PDU altemative of the PDU data type is

also a choice whose first element, F-INITIALIZE-request, is assigned the tag context 0. This

 means that the first tag of an encoding of the F-INITIALIZE-request PDU will always be context

0. Now note that the Protocol-Version data type that appears later in the module also possesses

10. Other ASN.1 compilers refer to decoding as "parsing”.
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the explicit tag context 0. Since the definition of this type appears at the outermost lexical level,
as does the definition of PDU, both of these data types represent potential PDUs. Consequently,
when the generated FTAM decodiﬁg foutine cncounters a context 0 tag as the first type octet of

an encodmg, it has no way of knowmg whether or not the value being represented is a Protocol-
Version PDU or a F-INITIALIZE-request PDU. In this pamcular case, a two tag lookahead is

necessary to disambiguate the encoding.

From the name PDU it is natural to assume that this data type is the root of the FTAM

definitions and that, all FI’AM PDU's originate fmm this type. 'I'his heun'stic could therefore be

used to msolve this parucular amblgmty Howéver, this is cleariy an assumpuon since there is no
construct of ASN.1 being used to indicate that this condition holds true. In as much as forward
references are allowed in the notation, it is not possible to make this assumption based on the
mere fact that this deﬁnit:idn appears ﬁfsn Consequently, all data types that appear at the
outermost lexical lével ofa module must be considered PDUs in their entirety and the ambiguity
remains. In fact, since the elements of the PDU data type do not possess explicit tags, the absence
or presence of this type definition does not influence the formulated encodings in any way; in
_ other words, this data type is extraneous with respect to how an FTAM encoding is built and

interpreted.

It is true that the FTAM standard does not intend that the Protocol-Version data type be
considered a PDU by itself. In reality it is a supporting type definition that is referenced as a
named type within other PDU definitions. Yet, the compilcr has no means of making this

distinction based on the notaﬂon itself.!! Thcrefore, every type definition that is not lexically

11. Using the heuristic thu any data type mentioned within another type is necessarily a supporting type would
preciude recursive defmitions.
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embedded within another type definition must be treated as a PDU. As a general approach to the
issue of ambiguity, requiring more than a single tag lookahead would require any ASN.1
compiler to generate an LR(k) implementation. This would almost certainly prevent the

realization of efficient implementations.

The ASN.1 definition of what constitutes an ambiguous instance of the notation requires

clarification.

5.2 Library Managemént

The unrestricted manner in which type’br value definitions within other ASN.1 modules may
be referenced presents another area of the ASN.1 standard that appears to be inadequately
defined. When an ASN.1 user wishes to reference a type or value that has been defined within
another module the. External Reference construct may be used. As explained in section 3.4.3, an
external reference consists of the specification of the module name where the definition appears
and the actual name of the desired type or value. A proposal to enable the ASN.1 user to exert
explicit control over the importing and exporting of definitions is currently under consideration in
the pending draft addendum. However, a potential problem which has been overlooked by the

definition of this external referencing capability involves the potential for mutually dependent

7modu1e deﬁnitions.r Cdnsidcf thc fO]lOW;lg modules:
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Module-A DEFINITIONS ::= BEGIN
Type-Al ::= BIT STRING
Type-A2 ::= SEQUENCE {

Module-B.Type-B1

END

Module-B DEFINITIONS ::= BEGIN
Type-B1 = OCTET STRING
Type-B2 ::= SEQUENCE {

Module-A. Type-Al

)
END

Figure 10. Mutually Dependent Modules

In this example, two ASN.1 modules are mutually dependent since each references a data type

_that is defined within the other.'? This potential for mutual dependencies requires that an ASN.1

* compiler generate partially complete intermediate code files and makes the automated processing
of these deﬁniu'ons extremely difficult. This problem is atributable to the absence of a well

_defined library management concept within ISO 8824.

~ 5.2.1 Linear Elaboration

The problem ng mutually dependent modules can be solved if ISO 8824 were to establish a

requirement of linear elaboration.!! The Ada prdgramming language effectively utilizes this
concept to prevent the possibility of mutual dependencies among compilation units. Elaborarion
i; defined as the process by which an entity is brought into existence. According to the definition
of Ada, this marks the point at which the name of a declarative item is bound to its type. The
name of an Ada entity may not be used before the elaboration of the declarative item that declares

this entity takes place. With respect to compilation units, the concept of linear elaboration

12. Mutually dependent modules appear in the X.500 series of standards.
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requires that a noncircular ordering of all compilation units referenced, either directly or
indirectly, by a given program must exist. If no such ordering can be found, the program is

illegal.

This same requirement could be applied to the ASN.1 standard to prevent the possibility of

mutual dependencies.

5.2.2 Useful Types

A set of predefined data types, called useful types, is specified in section three of ISO 8824.

Four data types are defined: Generalized time, Universal time, the Extemal type, and the Object
Descriptor type. One problem associated with the manner in which these types are defined
concems their disposition relative to the rest of the standard. Specifically, the means through
which their names are made visible to all mbdule definiions is not clear. Hence, their
relationship to the ASN.I standard itself is unclear. The development of a library concept would

also serve to solidify the disposition of these types.

Like Ada’s package STANDARD, a predefined module of these useful types should be

defined. This would consequently allow any ASN.1 module to explicitly import these types

whenever their use is required. Alternatively, ﬂns irhponing of these types could be defined as

implicit as s the case with package STANDARD. In any regard, the disposition of these types as

a predefined environment would be clarified and therefore strengthened if a module were to be

formally defined.

5.3 Efficiency versus Generality

The development of any standard seems to entail a perpetual series of compromises. Issues

conceming genemﬁty and efficiency are typlcally in conflict and a balance of the two is often the
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best that can be achieved. For the most part, ASN.1 and BER adequately strikes this balance.
However, there are particular instances where the issue of generality has been favored over

considerations of efficiency to a questionable degree.

5.3.1 Encoding Integers

As stated in section 3.3.6.1, ISO 8825 requires that all integer values be encoding in a
minimum number of octets. This requirement prohibits integer encodings from being
unnecessarily large and' prevents the pathological case where an integer value may be transferred
with an arbitrarily number of leading octets that contain either all zeros or all ones. Nonetheless,
the cost of this decision is expensive with respect to efficiency. It has been shown that the
encbding and decoding of an ASN.1 integer value, in contrast to a simple memory copying
“technique, decreases the transfer rate by a factor that ranges from § o 20 depending upon the host
system.'") Moreover, in this same set of é;e;rimems it was shown that a fixed length approach

reduced the encoding time by a factor of 5-6.

To support the réqui:ement of integer encoding minimality the nin—time system must perform

_aseries of checks to determine the size of each integer value. This can be accomplished through

- successive range checks or successive logical operations on the leading byte of the value.

However, regardless of which approach is used, the process is unnecessarily slow. Requiring

integers to be encoded in 2 minimum number of bytes is ill-advised with respect to performance.

5.3.2 Object Identifiers

The encoding and decoding of object identifier valgcj 1san:ungeggssaglz mefﬁcxcm process.
Comprised of a series of numeric values, called component values, an object identifier is encoded
by Ieprescn vvu;gwe;ch » componcm Vaiuc as é sene; gfﬁsre'wiéh-b_it 'quann_ ities. These seven-bit

quantities are concatenated to form each component. The leading bit of each contents octet is
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used to demarcate the boundaries of these component values. To further contribute to this
inefficiency, the first two components of any object are handled as a special case. Since the value
of the first component is restricted to the range 0..2, the encoding of the first two components
may be represented using the equation: $ 40(X) ~ + — Y $ where X denotes the value of the first
component and Y denotes the value of the second. This requires that the runtime routine that
performs this encoding and decoding must use its knowledge of the object identifier tree structure

to determine the values of X and Y. The application of this knowledge is expensive.

The use of seven-bit quantities is not desirable since bit masking or arithmetic shifting is
always necessary to isolate the value. Furthermore, it is not clear whether a savings of one octet

warrants the computationally expensive combination of the first two component values.

5.4 Explicit Tagging

From a philosophical perspective the concept of explicit tagging seems erroneous; it thrusts
the responsibility of preventing ambiguity onto the user. It is certainly possible to establish a
standard, canonical ordering of the type definitions within any module and to determine tag
values from this ordering. Consequently, a compiler could potentially generate these tags and
assume this responsibility instead of the user. As long as the generated tags are predictable,
economical, and unique, the users needs would be met. For example, a simple top down, left to

right sequential numbering scheme would fulfill these three requirements.

If such a sequential tagging generation aigorithm were adopted, tag values would not be

reusable in the case of mutually exclusive contexts. Therefore, the point at which extended tag

- values are necessary ri;ight arrive sooner than before apdwould cause the average length of an

encoding to increase. However, this point would depend on the extent of the mutually exclusive

contexts: note that the tag class values would no longer be required under this new scheme and,
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therefore, the capacity of the tag id field could be extended from 0..30 to 0..126.

Clearly it is more desirable to have these tags generated in an automated manner since the

issue of ambiguity can be subtle and error-prone.

5.5 Sets

The only difference between the ASN.1 sequence type and the ASN.1 set type is that the
order of elements within a set is not conSidemd significant. Therefore, opting to Vdeﬁne a daté type
as a set rather than a sequence is less restrictive. There is an intuitive tendency to equate
restrictiveness with inefficiency; after all, removing this restriction appears to allow the elements
to be reordered during transfer if this presents itself as a more efficient alternative. However, this
freedom is not more efficient. In fact the decoding of a set value is far less efficient than a
sequence due to this unpredictable ordering and, ironically, it is extremely uhlikely that the order
that these elements are received will ever differ from the order that appears in the original

definition.!?

The elements of a set value are decoding by a cycle of states within the decoding finite state
machine. This cycle is executed until it is determined that the end of the encoding has been
reached. As each element is encountered a boolean flag within the decoding state table, matched,
is checked and set to indicate that this decoding has occurred. After the appropriate runtime
routine performs the actual decoding, a check is made to determine if the end of the encoding has
been reached. If this check succeeds, then the matched flag of each element must be re-checked

in the state table to ensure that all the element values which were not marked as optional or had

13. The Session Layer does not provide the capability of reordering portions of a single PDU. It is therefore the
exclusive responsibility of the ASN.1 compiler w0 perform this reordering. Yet, it is doubtful that circumstances
exist where this would be desirable.
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not been assigned a default value have been represented within the encoding. If all of these

checks are successful the decoding terminates successfully.

In contrast, the decoding of a sequence value is a far less time consuming activity. Since the

‘order of elements is signiﬁcém. decoding is simply a matter of checking each tag as it is

encountered to ensure that it matches that which is expected. If this tag check ever fails, the
decoding is terminated as a failure. Note that the end of the encoding does not require special

processing and there is no need for the matched flag to be set or checked.

The inclusion of set types in ISO 8824 appears esoteric and predicated on the need for
completeness. Their use within an actual implementation can be deceptive where efficiency is

concemed.

5.6 Macros

The Macro Notation enables a user to alter the grammaf of the ASN.1 language "on the fly".
As such, the existence of macros makes developing a conformant implementation inordinately
difficult. Although certain programming languages are capable of solving this class of
problem,'# these languages do not possess the efficiency to make their use advisable in a network

implementation. Hence, the current definition of macros poses an obstacle.

Philosophically, the presence of a macro notation is inappropriate. As a descriptive
mechanism that defines the informational content of an application protocol, one of ASN.1’s
most valuable benefits is the concise and accurate means of human communication that it

represents. In this respect, it is critical that its form remain standard. This enables ASN.1 to

14. programming languages like Icon or LISP



effectively bridge the gap between the precise communication of computers and the imprecise

communication of human beings.
With the use of macros, the ASN.1 language can assume an amorphic form that is determined

by the personal tastes of the ASN.1 writer. This can only serve to reduce the overall quality of

the notation itself.

|

t

o6 ¢ & Gill &

g

[

| . i



W

L

35

REFERENCES

.ISO 8824: 1987(E), "Information processing systems - Open Systems Interconnection -

Specification of Abstract Syntax Notation One (ASN.1)", Intemational Organization for

Standardization, Switzerland, December 15, 1987.

.ISO 8825: 1987(E), "Information processing systems - Open Systems Interconnection -

Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)",

International Organization for Standardization, Switzerland, November 15, 1987.

. 1SO 8571/4: 1986(E), "Information processing systems - Open Systems Interconnection - File

transfer, access and management - Part 4: The file protocol specification”, International

Organization for Standardizatipn, Switzerland, August 7, 1986.

. Reference Manual for the Ada Programming Language, ANS/MIL-STD-1851A, American

National Standards Institute, Inc., February, 17 1983.

. Christian Huitema and Assem Doghri. "A High Speed Approach for the OSI Presentation

Protocol”, Proceedings of the IFIP International Workshop on Protocols for High-Speed

Networks, Zurich, Switzerland, May 9, 1989.






